Robust estimation of mixing measures in finite mixture models
نویسندگان
چکیده
منابع مشابه
Robust estimation of mixing measures in finite mixture models
In finite mixture models, apart from underlying mixing measure, true kernel density function of each subpopulation in the data is, in many scenarios, unknown. Perhaps the most popular approach is to choose some kernel functions that we empirically believe our data are generated from and use these kernels to fit our models. Nevertheless, as long as the chosen kernel and the true kernel are diffe...
متن کاملConvergence of Latent Mixing Measures in Finite and Infinite Mixture Models By
This paper studies convergence behavior of latent mixing measures that arise in finite and infinite mixture models, using transportation distances (i.e., Wasserstein metrics). The relationship between Wasserstein distances on the space of mixing measures and f -divergence functionals such as Hellinger and Kullback–Leibler distances on the space of mixture distributions is investigated in detail...
متن کاملConvergence of latent mixing measures in finite and infinite mixture models
We consider Wasserstein distances for assessing the convergence of latent discrete measures, which serve as mixing distributions in hierarchical and nonparametric mixture models. We clarify the relationships between Wasserstein distances of mixing distributions and f -divergence functionals such as Hellinger and Kullback-Leibler distances on the space of mixture distributions using various iden...
متن کاملConvergence of latent mixing measures in nonparametric and mixture models
We consider Wasserstein distance functionals for assessing the convergence of latent discrete measures, which serve as mixing distributions in hierarchical and nonparametric mixture models. We clarify the relationships between Wasserstein distances of mixing distributions and f -divergence functionals such as Hellinger and Kullback-Leibler distances on the space of mixture distributions using v...
متن کاملNonparametric Estimation of Finite-mixture Models
The aim of this paper is to provide simple nonparametric methods to estimate finite-mixture models from data with repeated measurements. Three measurements suffice for the mixtures to be fully identified and so our approach can be used even with very short panel data. We provide distribution theory for estimators of the number of mixture components, the mixing proportions, as well as of the mix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2020
ISSN: 1350-7265
DOI: 10.3150/18-bej1087